LIMNOLOGY AND OCEANOGRAPHY

Letters

>
(¥p)
g

Open Access

Limnology and Oceanography Letters 2019

© 2019 The Authors. Limnology and Oceanography published by Wiley Periodicals, Inc.
on behalf of Association for the Sciences of Limnology and Oceanography.

doi: 10.1002/1012.10122

SPECIAL ISSUE-CURRENT EVIDENCE

Microplastic occurrence and effects in commercially harvested
North American finfish and shellfish: Current knowledge and
future directions

Britta R. Baechler ,'* Cheyenne D. Stienbarger,” Dorothy A. Horn©®, Jincy Joseph,? Alison R. Taylor,? Elise F. Granek,’

Susanne M. Brander?
'Environmental Science and Management, Portland State University, Portland, Oregon; “Department of Biology and
Marine Biology, University of North Carolina, Wilmington, North Carolina; *Department of Environmental and Molecular
Toxicology, Oregon State University, Corvallis, Oregon

Scientific Significance Statement

As global seafood consumption rises, it is important to understand the mechanisms by which fisheries are affected by micro-
plastic pollution. A growing body of literature describes the occurrence and effects of microplastics in commercial species, pri-
marily from Europe, Asia, and South America; however, there are far fewer studies conducted in North America. In this article,
we review the evidence available for the presence and effects of microplastics on commercially valuable fishery species of
North America and possible consequences of human consumption. We identify key priorities for future research on this topic
including geographic and taxonomic representativeness; physiological, organismal, and population level effects; microplastics
as multiple stressors; human health risks; and standardization of field and lab protocols.

Abstract

Commercial fisheries yield essential foods, sustain cultural practices, and provide widespread employment
around the globe. Commercially harvested species face a myriad of anthropogenic threats including degraded
habitats, changing climate, overharvest, and pollution. Microplastics are pollutants of increasing concern,
which are pervasive in the environment and can harbor or adsorb pollutants from surrounding waters. Aquatic
organisms, including commercial species, encounter and ingest microplastics, but there is a paucity of data
about those caught and cultured in North America. Additional research is needed to determine prevalence,
physiological effects, and population-level implications of microplastics in commercial species from Canada,
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the United States, and Mexico. Investigations into possible human health effects of microplastic exposure from
seafood are also greatly needed. This synthesis summarizes current knowledge, identifies data gaps, and pro-
vides future research directions for addressing microplastics effects in commercially valuable North American

fishery species.

Commercial fisheries and aquaculture in North America
serve as cornerstones for many communities with deep roots
in subsistence, recreational, and commercial fishing. These
sectors support cultural practices and provide widespread
employment throughout the continent (FAO 2018). Commer-
cially harvested species are facing a myriad of threats in the
Anthropocene, ranging from increasing ocean temperatures to
modified habitats, pollution, and marine debris (Halpern et al.
2015; Lusher 2015; Hare et al. 2016; DeCourten et al. 2019).
Interactions with marine debris are deeply problematic for
marine species such as turtles, seabirds, marine mammals,
and fishes (Wilcox et al. 2016, 2018), with entanglement and
ingestion documented to cause harm at the individual and
possibly population levels (Kiithn et al. 2015). Plastic marine
debris poses varied threats to individual organisms as well as
entire food webs based on size, chemical composition, and
bioavailability (Fig. 1; Gall and Thompson 2015). Micro-
plastics, synthetic polymeric particles or fibers 0.0001-5 mm
in length are an emerging area of study because they are
ingested and respired by hundreds of different marine and
aquatic species (Rochman et al. 2016). Numerous studies have
documented effects of microplastic internalization ranging
from sublethal responses such as reduced fecundity, altered
growth, and increased stress to mortality at higher particle
concentrations (e.g., Rochman et al. 2013, 2014; Mazurais
et al. 2015; Critchell and Hoogenboom 2018).

Research is needed to determine effects and to assess the
risk of microplastic ingestion and exposure on the commer-
cially important species that are integral to the livelihoods
and cultural histories of many North American communities.
This synthesis of current evidence up until 01 March 2019
focuses on Canada, the U.S., and Mexico, though we acknowl-
edge the importance of the fisheries and need for microplastic
research in other countries and territories in this broad geo-
graphic region. We present the top commercial fishery species
by North American country (Fig. 2; Supporting Informa-
tion Appendix 1), display and describe which species have
existing data on microplastics contamination and/or effects
(Fig. 3, Table 1), and identify priority research areas to better
understand ecological and human health risks of micro-
plastics in North American commercial fishery species.

Commercial fisheries in North America

As of 2016, 88% of global aquaculture and fisheries produc-
tion was utilized for human consumption (FAO 2018). Com-
mercial fisheries in North America are no exception, with
recent estimates for annual per capita seafood consumption at

22.6 kg, 7.3kg, and 3.6 kg for Canada, the United States
(U.S.), and Mexico, respectively (FAO 2014; Cantoral et al.
2017; National Marine Fisheries Service 2018a,b). In 2016,
Canadian commercial marine and freshwater fisheries landed
0.88 million metric tons (1 million metric tons = Mt) for a
total value of $2.56 billion USD ($3.37 billion CAD), with
aquaculture accounting for an additional $1.02 billion USD
($1.34 billion CAD). The industry labor force in Canada
includes 44,000 commercial fish harvesters and crew, 3,300
individuals employed by the aquaculture industry, and an
additional 28,700 individuals in the seafood product prepara-
tion and packaging sectors (DFO 2018). U.S. fisheries landings
for the same year were 4.49 Mt and exceeded $5.4 billion USD
in value (National Marine Fisheries Service 2017). In 2016,
these efforts were supported by over 1.2 million jobs in the
U.S. (National Marine Fisheries Service 2018a,b). Between
2006 and 2014, the coastal states of Mexico produced 1.3 Mt
of fish and seafood per year (85% from wild caught fishery
landings; 15% from aquaculture), with an average annual eco-
nomic value of $890 million USD ($17 billion MXN), and
supported roughly 238,000 and 56,000 jobs, respectively, in
the fishing and aquaculture sectors (Melgoza-Rocha et al.
2018). These numbers highlight the economic and cultural
importance of this sector. The use of commercial seafood for
fresh, frozen, canned, and cured products is integral to the
economies of all three North American countries and the reli-
ance on commercial fisheries, both wild-caught and
aquacultured, for protein is predicted to increase substantially
over the next few decades (World Bank 2013).

Aquaculture

Over 50% of global seafood consumption is derived from
aquaculture production, with an increase to 62% of global
consumption predicted by 2030 (World Bank 2013; FAO
2018). North America is currently a minor player on this
global aquaculture stage, accounting for less than 1% of global
production in 2014, a contribution that has steadily declined
over the last two decades (FAO 2016), but with a forecasted
increase in the coming decades. Aquaculture in North Amer-
ica is dominated by finfish production with a smaller segment
dedicated to production of bivalve molluscan shellfish, pre-
dominantly oyster, clam, and mussel species (Fig. 2;
Supporting Information Appendix 1). Atlantic salmon (Salmo
salar) and rainbow trout (Oncorhynchus mykiss) are the chief
finfish species farmed in Canada (FAO 2018) whereas Channel
catfish (Ictalurus punctatus), rainbow trout, and Atlantic
salmon are the leading finfish produced by U.S. aquaculture
(National Marine Fisheries Service 2018a,b). In 2014, finfish
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Fig. 1. Microplastics from primary and secondary sources enter the food chain by direct ingestion at all trophic levels, but are also acquired in prey
items and hence may bioaccumulate in larger organisms, causing negative health effects that may impact population persistence. Ultimately micro-
plastics and associated additives or sorbed pollutants may threaten the safety of seafood ingested by humans.

aquaculture in Mexico was dominated by production of tilapia,
carp, and trout varieties (Fig. 2; Supporting Information Appen-
dix 1; Melgoza-Rocha et al. 2018).

The primary species used in shellfish aquaculture varies by
North American country (Supporting Information Appendix 1).
In Canada, the most valuable cultured shellfish fisheries on both
the Atlantic and Pacific coasts are mussels (Mytilus edulis), oysters
(Crassostrea virginica, C. gigas), clams (Manila clam Venerupis
philippinarum, soft-shell clam Mya arenaria, geoduck Panopea gene-
rosa, quahog Mercenaria mercenaria, littleneck clam Protothaca
staminea, varnish clam Nuttallia obscurata), and scallops
(Supporting Information Appendix 1). In 2017, while mussels
were the largest farmed shellfish fishery by landing weight in
Canada (0.024 Mt), oysters were the most valuable fishery at
$33.93 million USD ($45.12 million CAD; Supporting Informa-
tion Appendix 1). In 2016, the year with the most recent
U.S. aquaculture data, U.S. shellfish aquaculture yielded 0.017 Mt
of oysters ($192 million USD), 0.005 Mt of clams ($138 million
USD), and 0.002 Mt of shrimp ($10 million USD; National
Marine Fisheries Service 2018a,b). In Mexico, farmed bivalve spe-
cies include the blue mussel, hard clams, oysters (C. virginica,
C. gigas, C. corteziensis, Pteria sterna, Pinctada mazatlanica), and
scallops. The Eastern oyster is the most heavily cultured bivalve
in the Gulf of Mexico and is sold for both human consumption
and adornments using its pearls and shells (National Aquaculture
Sector Overview 2018; Tunnell 2017).

No crustacean aquaculture farms currently exist in
Canada; however, across the U.S. and Mexico, brown, white,
and pink shrimp (Farfantepenaeus aztecus, Litopenaeus
setiferus, Farfantepenaeus duorarum) are the primary crustaceans

farmed (FAO 2018). Most of this industry is located on the Gulf
Coast of Mexico, primarily in Louisiana, Alabama, and Texas in
the US. and into the Gulf Coast of Mexico. Mexico’s shrimp
aquaculture recorded 0.056 Mt in 2003 (National Aquaculture
Sector Overview 2018). Although aquacultured species repre-
sent a relatively small fraction of seafood produced and con-
sumed in North America, a substantial presence as well as
predictions of increased production makes this market impor-
tant for the consideration of potential microplastic effects.

Wild harvest

Though North America is not a top global producer of
aquacultured seafood, the region is a significant contributor to
global marine finfish landings (Supporting Information Appen-
dix 1; FAO 2018). Among the three countries, the U.S. has the
highest landings and is ranked 3™ globally for total marine cap-
ture, having produced 3.96 Mt in 2017. Canada reported
0.43 Mt in commercial finfish landings for 2017 with Pacific
salmon (Oncorhynchus spp.), herring (Clupea spp.), hake
(Merluccius spp.), redfish (Sebastes spp.), and cod the most fre-
quently landed (Fisheries and Oceans Canada 2018). In the
U.S., the top species by landed weight were Alaskan pollock
(Gadus chalcogrammus), menhaden (Brevoortia spp.), Pacific
salmon (Oncorhynchus spp.), hake, and cod (Gadus spp.; see
Fig. 2, Supporting Information Appendix 1; National Marine
Fisheries Service 2018a,b). Just over 1.0 Mt of commercial fin-
fish were landed in Mexico where Pacific sardines (Sardinops
sagax), tuna (various spp.), tilapia (various spp.), anchoveta
(Cetengraulis mysticetus), and carp (various spp.) were among
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the most captured in 2014 (Melgoza-Rocha et al. 2018; most
recent data available).

Like finfish, shellfish (including crustaceans, bivalves, and
other molluscs) are important players in North American
coastal ecosystems, cultures, economies, and diets. Dozens of
species are harvested from the wild in Canada, the U.S., and
Mexico (Supporting Information Appendix 1). In Canada, crabs
(Cancer magister, Chionoecetes opilio, C. bairdi) and lobster
(Homarus americanus) comprise the bulk of wild-caught shell-
fish production, totaling roughly 0.10 Mt landed for each
respective fishery in 2017 (Fig. 2; Supporting Informa-
tion Appendix 1; Fisheries and Oceans Canada 2018). Wild
Atlantic prawn (Pandalus borealis), a coldwater shrimp, has his-
torically been one of the most important commercial harvests
off the east coast of Canada, however as of 2018, NOAA reports
this fishery collapsed (National Marine Fisheries Service 2018a,
b). Along the Gulf of Mexico, there are 49 officially recognized
shellfish species harvested, with 16 species collected from
U.S. waters, and 46 harvested from Mexican waters (Tunnell
2017). In the U.S., shrimp, squid, crabs (Cancer magister, Cal-
linectes sapidus, Chionoecetes opilio, C. bairdi), and lobster
(Homarus americanus) were the highest-volume, highest-value
fisheries in 2017 (Fig. 2; Supporting Information Appendix 1;
National Marine Fisheries Service 2018a,b). Shrimp, oysters,
squid, and crab were the most significant shellfisheries in Mex-
ico in 2014, the most recent year for which landings data are
available (Supporting Information Appendix 1), though differ-
ences between wild-caught and farmed fisheries are difficult to
parse out (Melgoza-Rocha et al. 2018). Fisheries along the Gulf
of Mexico coastline continue to fluctuate in response to natural
and anthropogenic distrurbances (Tunnell 2017) and fishery data
are likely underreported (Finkbeiner and Basurto 2015). Overall,
the continued strength of these wild fisheries is critical to the
economies of all three countries, thus emerging anthropogenic
effects such as those presented by microplastics are of consider-
able concern. While this paper does not focus on wild fisheries
for subsistence by tribal and other entities, it is also critical to
consider the importance of these wild resources through this lens.
Based on these data, the relevant species for studying micro-
plastics in North American commercial fisheries vary regionally
but with some species groups in common—an important consid-
eration when targeting and designing future studies.

Marine microplastics: A brief review

Marine anthropogenic debris, primarily in the form of plas-
tics, is ubiquitous and persistent, and comprises up to 95% of
all waste in global oceans and on beaches (Andrady 2011;
Eriksen et al. 2014; Galgani et al. 2015). The amount of plastic
entering the marine environment continues to increase annu-
ally and it is estimated that in 2010 alone, 4.8-12.7 Mt of
plastic ended up as marine litter, representing 1.7-4.6% of the
total plastic waste generated in 192 coastal countries (Jambeck
et al. 2015). Microplastics, 0.0001-5 mm in size, have been
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documented throughout the water column, in surface waters,
sediments, and in marine organisms and are therefore a global
threat to marine ecosystems (Barnes et al. 2009; Avio et al.
2017). Although widespread, distribution of microplastics in
coastal and marine environments is unpredictable and patchy
because meteorological, atmospheric, coastal, and tidal pro-
cesses all contribute to the movement, dispersal, and accumu-
lation of these largely buoyant particles (Foekema et al. 2013).
However, the microplastics problem is particularly pro-
nounced in coastal zones due to their proximity to terrestrial
inputs, tidal processes that provide favorable conditions for
debris accumulation (Ryan et al. 2009; Weinstein et al. 2016;
Gray et al. 2018), wave action, and UV light exposure that col-
lectively promote fragmentation (Andrady 2011). The risks of
microplastic exposure to coastal fisheries and aquaculture in
North America are not well defined.

Not only is plastic found widely in the marine environment, it
is also ingested by hundreds of species around the world, span-
ning freshwater, coastal, pelagic, demersal, benthic, as well as
deep-sea environments (Rochman et al. 2015; Alomar and
Deudero 2017; Jamieson et al. 2019). A 2015 meta-analysis by
Gall and Thompson indicated that over 690 species have reported
encounters with marine debris through entanglement and inges-
tion, with 92% of those encounters involving plastic. Over
220 species of marine organisms, ranging from microscopic zoo-
plankton to bivalves, fish, marine mammals, sea turtles, sharks,
seabirds, and a host of other marine-associated species, have been
documented to ingest plastics (Lusher et al. 2017). The majority
of microplastic pollution research in North America has sought to
determine environmental concentrations of microplastics in lakes,
rivers, estuaries, and sediments, with recent investigations of
municipal wastewater treatment plants (WWTPs) as potential ave-
nues for microplastics to enter aquatic ecosystems (Auta et al
2017; Gies et al. 2018). For example, Mason et al. (2016) reported
the average concentration of microplastics in WWTP effluent
across the United States as 0.05 + 0.024 particles L™". Freshwater
ecosystems in North America were also found to have an abun-
dance of microplastics. Eriksen et al. (2013) reported microplastic
concentrations in the Great Lakes of: 1277-12,645 particles km™>
in Lake Superior, 0-6541 particles km™ in Lake Huron, and
4686-466,305 particles km™ in Lake Erie. Microplastics are
also present in North American lake sediments with
140-980 items kg™! dry sediment recorded for Lake Ontario
(Ballent et al. 2016). Microplastic concentrations in North Amer-
ican river water and sediments have been reported across a wide
range. For example, the San Gabriel and Los Angeles Rivers of
California contained 411 particles m~ and 12,932 particles m—
of water, respectively (Moore et al. 2011). Notably, microplastic
levels in the waters of the North Shore Channel in Chicago, Ili-
nois, U.S., downstream from a WWTP, were measured at
17.93 £ 11.05 particles m™3 (McCormik et al.2014; Shahul
Hamid et al. 2018) and in the St. Lawrence River in Canada were
13,832 + 13,677 particles m2 of sediment (Castafieda et al.
2014). These data provide evidence that waterways act as both



Baechler et al.

sinks of some microplastic pollution as well as sources of micro-
plastic pollution to marine systems.

Below, we review existing data on microplastics in North
American fisheries species current to 01 March 2019, and out-
line the needs and future directions for the study of occur-
rence and effects of microplastics in commercially harvested
finfish, bivalves, and crustaceans in this part of the world. We
offer suggestions for future laboratory and field studies related
to commercial fisheries in Canada, the U.S., and Mexico.

Ecological prevalence and effects

The primary route of organismal microplastic exposure
occurs via ingestion of microplastics mistaken for natural prey
items (Lusher 2015), or ingestion of contaminated prey items
(Nelms et al. 2018), though both finfish and shellfish can also
passively uptake microplastics through respiration and via the
gills (Watts et al. 2015). Consumed microplastics can transfer
across trophic levels and may bioaccumulate in predators
(Farrell and Nelson 2013; Setdld et al. 2014). Plastic materials
identified in the digestive tracts of marine organisms include
fibers, foams, films, and fragments with recorded chemical sig-
natures of cellophane, high density polyethylene (HDPE), low
density polyethylene (LDPE), polyethylene terephthalate
(PET, PETE), nylon (PA), polypropylene (PP), polymeth-
ylmethacrylate (PMMA), polyurethane (PU, PUR), polystyrene
(PS), among others determined by various spectroscopic tech-
niques such as Fourier-transform infrared (FITIR) and Raman
spectroscopy (Hidalgo-Ruz et al. 2012; Wagner et al. 2017;
Pinto da Costa et al. 2019). Microfibers are the most prevalent
category of microplastics ingested by marine fishes, crusta-
ceans, and bivalves, typically representing more than 90% of
plastics ingested (Mizraji et al. 2017), with microplastic frag-
ments, foams, and films representing a smaller proportion
(Jabeen et al. 2017).

Additives and monomers, including bisphenol A (BPA),
organotoxins, and phthalates, with established biologically
harmful properties such as reproductive toxicity, mutagenicity,
and carcinogenicity, are used to manufacture plastics (Teuten
et al. 2009). If microplastics are ingested, these compounds can
be released from the polymer and absorbed by predators
(Browne et al. 2008, 2013). In addition to containing additives,
plastics also adsorb harmful hydrophobic persistent organic
pollutants (POPs) such as dichlorodiphenyltrichloroethane
(DDT), polychlorinated biphenyls, polycyclic aromatic hydro-
carbons, polybrominated diphenyl ethers, and dioxins, among
others (Rios et al. 2007; Bakir et al. 2014; Gallo et al. 2018).
Because of their high surface area to volume ratio and hydro-
phobic nature, microplastics are known to sorb hydrophobic
organic pollutants in concentrations up to 1 million times
greater than surrounding waters (Mato et al. 2001). Under
physiological conditions, these pollutants may desorb into the
digestive tracts of animal predators when ingested. The ability
of plastics to sorb to chemicals that can become bioavailable is
a concern attributed to microplastic consumption, although
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studies are ongoing to determine whether leaching from
ingested plastics significantly increases contaminant burden.
However, the endocrine disrupting properties of these hydro-
phobic and persistent chemicals in wildlife are well docu-
mented, as well as the ability of such chemicals to cause
sublethal effects on growth, reproduction, and behavior at very
low concentrations (e.g., ng L™Y) (reviewed in Colborn and
Thayer 2000; Brander 2013). As such, the leaching of even
small amounts of these pollutants from ingested plastic may
pose an additional hazard to marine organisms. Furthermore,
internal migration of plastic particles has been documented in
fish and crabs in laboratory studies that report smaller micro-
particles translocated internally to the circulatory system and
tissues (e.g., liver, hepatopancreas) in a range of taxa (Browne
et al. 2008; Avio et al. 2015; Brennecke et al. 2015). In the
model zebrafish, microplastics can be maternally transferred to
eggs (Pitt et al. 2018). Translocation of microplastics may make
leaching of associated chemicals more likely.

Marine species, including those harvested for commercial
purposes, may therefore be ingesting both plastic debris and a
cocktail of associated contaminants (Rochman et al. 2015).
Laboratory studies have demonstrated that continuous expo-
sure to contaminated plastics can lead to accumulation of
plastic-associated pollutants in fish tissue in as little as 21 d
(Rochman et al. 2013; Wardrop et al. 2016).

Human exposure and effects

Given the prevalence of microplastics in coastal environ-
ments, it is not surprising that they have been detected in sea-
food intended for human consumption (Van Cauwenberghe
and Janssen 2014; Rochman et al. 2015). Shellfish, small fish
(e.g., herring, anchovies), bivalves, and echinoderms may pose
the greatest risks to human consumers because they are usually
eaten whole, including the gastrointestinal tracts and/or gills
which are known sites of microplastic accumulation (Smith
et al. 2018). Microplastic exposure in humans remains under-
studied. Only one report to date has examined human feces
finding that samples contained up to nine different types of
plastic, with PP and PET being most common. This provides pre-
liminary insights regarding microplastic exposure and ingestion
by humans (Liebmann et al. 2018). Environmental exposure to
microplastics can occur through inhalation or ingestion, with
endocytotic and paracellular transfer across epithelial tissues pro-
posed as mechanisms for uptake into human blood and tissues
(Wright and Kelly 2017). The average person is estimated to
ingest more than 5,800 plastic particles combined annually from
beer, water, and sea salt (Kosuth et al. 2018), compared with an
estimated annual exposure of 11,000 and 110,000 particles for
seafood consumers in Europe and China, respectively (Van
Cauwenberghe and Janssen 2014; Li et al. 2015). Even though
90% of ingested microplastics are thought to be removed from
the human body through the excretory system (EFSA Panel on
Contaminants in the Food Chain 2016), particles either retained
or excreted may have human health implications. Adverse
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effects include inflammatory responses, transfer of sorbed pollut-
ants, and disturbance of the gut microbiome (Wright and Kelly
2017). For example, both PE (0.5-50 ym) and PET (0.5-20 pm)
particles derived from the wear and tear of plastic prosthetic
implants are found to migrate to cells and tissues and cause
increased inflammatory response (Willert et al. 1996). Specifi-
cally, PE particles are found to accumulate in lymph nodes and
to stimulate an immune response (Morawski et al. 1995; Bitar
and Parvizi 2015). As in marine fauna, plastic additives and
unreacted monomers may leach out once microplastics enter
the human body.

Human health effects of many POPs, some plastic additives,
and selected monomers such as styrene are well established.
For example, high levels of BPA in human urine, ranging from
1 to 8 ng mL™", has been linked to cardiovascular disease, Type
2 diabetes, higher odds of obesity, and abnormal waist circum-
ference (Lang et al. 2008; Do et al. 2017). Phthalates elicit
endocrine disrupting properties at certain concentrations; vinyl
chloride, acrylonitrile, acrylamide, and ethylene oxide mono-
mers can cause mutagenicity, carcinogenicity, and toxicity and
are associated with birth defects such as hypospadias (altered
male urethra placement; Halden 2010; Lithner et al. 2011;
Rochester 2013); and POPs are long documented to increase
adverse health effects (Carpenter 2011). Microplastics may also
alter the microbiome of the tissues they interact with and can
potentially be carriers of pathogens through the microbial com-
munities found on their surface (Wright and Kelly 2017). Con-
sidering the physical disruption and potential risk of
translocation, as well as chemical additives, sorbed pollutants,
and microbes associated with microplastic particles, there is a
valid concern for potential human health effects due to micro-
plastic ingestion. Only by more thoroughly quantifying the
presence of microplastics in organisms consumed as seafood
can we begin to properly assess both the levels of exposure and
the risk associated with their consumption.

Microplastics in commercial fisheries

Finfish

The majority of microplastics research has focused on organ-
isms in European, Asian, or South American waters (Barboza
et al. 2018). However, a number of publications have reported
the occurrence of microplastics in commercially valuable spe-
cies of North America, focusing primarily on the presence or
absence of microplastics within the fishes’ gastrointestinal
tracts (Fig. 3, Table 1). The limited number of studies conducted
in North America (e.g., British Columbia, Newfoundland, and
Saskatchewan in Canada; California, Connecticut, and Texas
in the U.S.) indicate the presence of microplastics in field-
collected finfish from freshwater bodies, coastal environments,
and associated watersheds (e.g., Phillips and Bonner 2015; Lib-
oiron et al. 2016; Collicutt et al. 2019, Fig. 3, Table 1). Studies
by Carpenter et al. (1972), Phillips and Bonner (2015), Liboiron
et al. (2016), Campbell et al. (2017), Munno (2017), Peters et al.
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(2017), and Liboiron et al. (2018) document the presence of
microplastics in field-collected commercial finfish, and
Rochman et al. (2015) reported the presence of anthropogenic
debris in eight species of commercial finfish purchased from
local markets being sold for human consumption (Table 1).
The reported ingestion of microplastics varies widely for finfish
sampled from North American waters, ranging from 0% in
individual silver hake (Merluccius bilinearis) to 46.5% in individ-
ual pinfish (Lagodon rhomboides) to 83% in individual northern
pike (Esox lucius; Campbell et al. 2017; Peters et al. 2017; Lib-
oiron et al. 2018). This suggests that microplastic ingestion
may be largely influenced by the areas surrounding the sam-
pling location, indicated by the higher incidence of plastics in
fishes from more urbanized areas (Phillips and Bonner 2015;
Liboiron et al. 2016; Campbell et al. 2017). For example,
Hipfner et al. (2018) documented the presence of microfibers
in 21% of individual Pacific herring (Clupea pallasii) from the
highly urbanized Salish Sea; but no microfibers were detected
in herring collected from remote locations along the British
Columbia coast. Similarly, European commercial fishes sam-
pled from the North Sea and the English Channel demon-
strated an overall microplastic ingestion of 2.6% and 36.5%,
respectively (Foekema et al. 2013; Lusher et al. 2013). The
inter- and intraspecies variation in plastic ingestion, as well as
the amount, morphology, and polymer type of microplastics
ingested by freshwater and marine commercial finfish raise
important questions. Different feeding strategies among spe-
cies as well as the heterogeneous distribution of plastics in the
environment likely account for some of these observations
(Lusher et al. 2017; Peters et al. 2017). Plastic ingestion in fishes
occurs across a wide variety of feeding types or guilds, and this
grouping may offer important insights on predicting micro-
plastic accumulation in fish (Vendel et al. 2017; McNeish et al.
2018). One recent study in Mexico investigating microplastic
burden in herbivorous (Scarthychthys viridis), omnivorous
(Girella laevifrons), and carnivorous (Graus nigra, Helcogramoides
chilensis, Auchenionchus microcirrhis) fishes found that omni-
vores had significantly higher microplastic loads in their guts
than the other two feeding groups (Mizraji et al. 2017). Fibers
are consistently documented as the leading form of ingested
microplastic by wild-caught specimens with PE, PP, and poly-
amide (PA) among the most commonly identified microplastic
polymers ingested by marine organisms (Lusher et al. 2013;
Rummel et al. 2016).

The physiological ramifications of microplastic ingestion in
commercially valuable finfishes are not well studied in North
American species. To our knowledge, there are only two publi-
shed North American-based laboratory studies, which aim to
determine ingestion or retention of microplastics in Atlantic
menhaden, pinfish, striped mullet (Mugil cephalus), spot
(Leiostomus xanthurus), flounder (Paralichthys spp.) and rain-
bow trout (Munno 2017, Table 1). Additional laboratory stud-
ies involving model species—zebrafish (Danio rerio), common
goby (Pomatoschistus microps), and Japanese medaka (Oryzias
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latipes)—along with Crucian carp (Carassius carassius), salmon,
pike, and rockfish (Sebastes schlegelii) have demonstrated the
potential for microplastic accumulation in organismal tissues,
including the translocation of microplastics from the gastroin-
testinal tract into hepatic tissues (Lu et al. 2016). Effects
include oxidative and hepatic stress, modified predatory
behaviors, reduced energy reserves, decreased lipid metabo-
lism, and the potential for endocrine disruption (Cedervall
et al. 2012; Rochman et al. 2014; de Sa et al. 2015; Lu et al.
2016; Yin et al. 2018). The reported physiological effects asso-
ciated with microplastic exposure in finfish can vary widely.
For example, the Furopean sea bass (Dicentrarchus labrax), a
commercial species in the Mediterranean Sea, exhibited path-
ological alterations to its intestinal epithelium following a
30-90 d exposure to untreated and polluted PVC microplastic
pellets, suggesting that microplastics and POPs can have a sig-
nificant negative effect on fish health (Peda et al. 2016). Con-
versely, minimal effects were observed following a short-term
exposure to microplastics in the same species (Mazurais et al.
2015). Such variation may be due to differences in experimen-
tal design of laboratory exposures including choice of micro-
plastic types and concentrations, exposure periods, and
measured endpoints (de Sa et al. 2018).

Shellfish

Microplastic research in shellfish has been primarily conducted
in Europe and Asia with relatively little research on commercially
harvested shellfish occurring in North America. To date, bivalves
are the most well-represented commercial fishery group in the
field of microplastics research due to their sessile nature, filter or
suspension feeding modes, and ecological, economic, and cultural
importance. Blue mussels (Mytilus edulis) are sediment-dwelling,
model organisms for microplastic studies and are frequently used
in the laboratory setting (Van Cauwenberghe et al. 2015). Studies
on field-collected shellfish in North America (e.g., British Colum-
bia, New Brunswick and Nova Scotia in Canada; East and South
Coasts—Maine, Connecticut, North Carolina, South Carolina and
Florida, and West Coast-Oregon and California in the U.S.) indi-
cate the presence of microplastics in tissues of mussels, oysters,
clams, scallops, and lobster from estuarine and coastal environ-
ments (e.g., Mathalon and Hill 2014; Murphy 2018; Waite et al.
2018; Baechler et al. this issue, Figs. 2, 3; Table 1), with at least one
study comparing farm-raised and wild-caught organisms and find-
ing no significant difference in microplastic burden between the
two groups (Davidson and Dudas 2016). Studies by Mathalon and
Hill (2014), Davidson and Dudas (2016), Murphy (2018), Waite
et al. (2018), Zhao et al. (2018), Potocka et al. (2019), and Baechler
et al. (this issue) document presence of microplastics in field-
collected bivalves but do not include laboratory exposure studies
(Table 1). To our knowledge, there have only been six North
American-based laboratory studies published, which aim to deter-
mine the propensities of shellfish to intake or egest microplastics
(Table 1). These studies demonstrate uptake of microplastic beads,
pellets, and fibers in oysters, clams, scallops, and mussels (Brillant
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and MacDonald 2000; Ward and Kach 2009; Wertz 2018; Woods
et al. 2018), and indicate microplastic accumulation may vary by
organ. For example, Gaspar et al. (2018) documented accumula-
tion of plastic nanobead particles in the hepatopancreas of Ameri-
can oysters, a high value commercial species (Fig. 2; Table 1).
Laboratory studies on shellfish undertaken outside of the North
American continent report mixed physiological effects and bio-
logical endpoints in bivalves exposed to microplastics of varied
types, sizes, and materials (Santillo et al. 2017). However, several
types of microplastics (microparticles, microbeads, microfibers)
can cause increased respiration rates, changes in feeding, reduced
fecundity, DNA damage, and neurotoxicity in various species
(e.g., Green 2016; Sussarellu et al. 2016; Ribeiro et al. 2017; Woods
et al. 2018). Specifically, polyethylene microbeads 0-80 ym diam-
eter have been shown to induce tissue inflammation in the blue
mussel (von Moos et al. 2012), and those 2-6 ym interfere with
energy uptake, reduce oocyte number, larval yield, and larval
development in the Pacific oyster (Sussarellu et al. 2016). PS micro-
granules (63-250 ym) reduce energy intake in the beach clam
Atactodea striata (Xu et al. 2017). Laboratory studies show direct
ingestion of PS microbeads (3 and 10 um diameter) in bivalves
(Browne et al. 2008) as well as trophic transfer of 0.5 ym diameter
microbeads from bivalve prey to crustacean predators (Farrell and
Nelson 2013), transport of 0-80 ym diameter microbeads through
the digestive system (von Moos et al. 2012), and accumulation of
50 nm and 3 pm PS microbeads in tissues (Gaspar et al. 2018).
Kolandhasamy et al. (2018) also demonstrated that blue mussels
incorporate microfibers (> 100 ym) into various organs including
those not associated with the digestive system (e.g., foot, mantle),
suggesting direct contact could lead to microplastic uptake via an
unknown mechanism. The ability of blue mussels to eliminate
microfibers has been observed by allowing depuration or purging
of the bivalve gut in clean filtered seawater resulting in egestion of
up to 60% of ingested microfibers over 9 h (Woods et al. 2018).
Research on the prevalence and effects of microplastic ingestion
in commercially important crustaceans across Canada, U.S., and
Mexico is extremely limited; a single study has examined the prev-
alence of microplastics in commercial American lobsters from the
northeast U.S. (Supporting Information Appendix 1). No data cur-
rently exist for most commercially important crustaceans, includ-
ing snow crab, Dungeness crab, blue crab, and shrimp
(Farfantepenaeus aztecu—brown, Litopenaeus setiferus—white, and
Farfantepenaeus duorarum—pink) as well as a number of other
North American commercially important species including aba-
lone (Haliotis rufescens), conch (Stombus), squid (Loligo opalescens),
and octopus (Octopus vulgaris).

Data gaps and future directions for North American
fisheries

While research on microplastics in marine and coastal
organisms is rapidly expanding and evolving, relatively little
is known about the prevalence and effects of microplastics for
many commercially important species. Priority goals include
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Fig. 2. Top North American Finfish and Shellfish Fisheries by landed weight in Canada, the United States, and Mexico. Hashed bars indicate a combina-
tion of wild and aquacultured fisheries; filled bars indicate wild fisheries only; white bars with no fill indicate aquacultured fisheries only. Presence of
microplastics investigations in the field or laboratory anywhere in the world is indicated by F (Field study), L (laboratory study), F/L (both field and labora-
tory studies), or | (Insufficient landings data). A star above the bar indicates that effects of microplastics have been studied.

improving geographic representation of studies, broadening
taxonomic sampling, increasing efforts to measure physiologi-
cal, organismal, population- and community-level effects on
target species, risk assessments for human populations that
rely on these fisheries, and importantly, standardization of
field and laboratory methodologies.

Geographic and taxonomic representation

To date, relatively few studies have investigated micro-
plastic effects in commercially harvested species in North
America (Table 1). The current body of published microplastic
literature focuses mostly on species collected from or

commercially targeted in Europe, Asia, and South America.
Moreover, emphasis has been placed on species that are
model organisms, easily accessible through established sam-
pling programs, or regularly available for sale at local markets.
Determining microplastic exposure and effects in a more rep-
resentative pool of commercially harvested freshwater, coastal
and marine fishes, crustaceans, and molluscs is critical to bet-
ter understand the prevalence of microplastics in North Amer-
ican commercial fishery species and to further estimate
potential risks. For example, the vast majority of microplastic
research conducted in Mexico measures environmental con-
centrations of plastics in water and sediments (e.g., Retama
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Pacific Ocean

United

*\ finfish
‘ shellfish

Atlantic Ocean

Fig. 3. North America, consisting of Canada, the United States (including Hawaii), and Mexico, is home to numerous fisheries. Shown here are the loca-
tions of studies examining microplastic occurrence in finfish (n = 11) and shellfish (n = 13) species harvested for seafood. Each point represents one site,
often with multiple sites per study. All data displayed here correspond with Table 1.

et al. 2016; Di Mauro et al. 2017; de Jesus Pifion-Colin et al.
2018), but studies addressing the occurrence and effects of
plastic debris in commercially harvested marine or aquatic
species from Mexican waters have yet to be undertaken.

Worldwide, laboratory studies of commercial fish species are also
lacking. Difficulties with live capture, animal husbandry, and inher-
ent species-specific complications such as delicate life histories or
long reproductive cycles hamper such studies. In addition, the pro-
pensity for air or water-borne microplastic contamination in an
experimental setting may confound results. These challenges mean
laboratory studies must be carefully planned, tightly controlled,
and meticulously monitored to ensure results reflect relevant levels
of microplastic contamination (Barboza et al. 2018).

Physiological effects of microplastics

Few studies have examined altered growth or other physiolog-
ical effects in commercial finfish species (but see: Critchell and
Hoogenboom 2018) in response to microplastic ingestion. One
study reports decreased oxygen consumption of the crab
Carcinus maenas when exposed to PS microbeads (Watts et al.
2016). Physiological studies on fish and benthic organisms have

demonstrated depressed growth, increased metabolism, changes
in feeding rate, and decreased reproductive output when exposed
to microfibers, microbeads, and microparticles (e.g., Cedervall
et al. 2012; Green 2016; Sussarellu et al. 2016; Woods et al. 2018;
Athey et al. Forthcoming). However, studies that evaluate
responses on the subcellular, cellular, or organ-levels following
exposure to plastics are limited. Thus, a broader range of physio-
logical endpoints across biological scales is needed to fully evalu-
ate the toxicity of microplastics to aquatic organisms
(Lusher 2015).

Organismal and population level effects of microplastics
Among a range of taxa, it is evident that microplastics could
affect organism- and population-level endpoints including
behavior, larval development, growth, reproduction, and physi-
ological function in a number of commercially important
North American finfish and shellfish species (e.g., Cedervall
et al. 2012; Green 2016; Sussarellu et al. 2016; Ribeiro et al.
2017; Woods et al. 2018), thus impacting fisheries health in
the long term. The available literature focuses primarily on
responses of individuals to microplastics without evaluating
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effects on populations or food webs (Lusher et al. 2017). This is
likely due to the difficulties of implementing population-level
studies in the environment (i.e., lack of control in the natural
environment, time and resource-intensive nature of the work
required, and the multitude of other environmental stressors at
a site). While laboratory studies using high microplastic doses
provide useful physiological insights, it is difficult to scale those
results to the population-level in order to determine environ-
mental effects (Burns and Boxall 2018).

Further research and modeling efforts examining population-,
community-, and ecosystem-level effects of microplastics using
environmentally relevant concentrations and commercially
and/or ecologically important species are needed. Future studies
should investigate mechanisms of microplastic uptake, anatomi-
cal burdens of internal microplastics, microplastic egestion and
excretion rates, and physiological effects of microplastics on vari-
ous levels of biological organization (from the subcellular to cel-
lular, anatomical, and individual), such as the approach taken
with other pollutants (e.g., Brander et al. 2015; Ankley et al.
2010). Such research will aid fisheries and aquaculture managers
in their ability to predict potential population-level issues associ-
ated with increased exposure to microplastics in the environ-
ment as human population and plastic consumption continue
to rise.

Microplastics as one of multiple stressors

Research on the effects of microplastic exposure has focused
on specific physiological or biological responses in isolation. We
know that marine organisms are exposed to multiple stressors in
their environment with the potential for additive or synergistic
effects (Noyes and Lema 2015; DeCourten and Brander 2017).
Yet how microplastics are interacting with other environmental
stressors such as hypoxia, increased ocean temperatures, and
ocean acidification, and whether such interactions lead to addi-
tive or synergistic effects in commercially important North
American fishery species is another demonstrable data gap.

Unknown human health risks

Primary concern regarding ingestion of polluted microplastics
by commercial fishery species is the food web biomagnification
of microplastics (Derraik 2002; Moore 2008; Teuten et al. 2009).
The bioavailability of micro and nanoplastics and associated con-
taminants within tissues of commercial species caught and sold
for human consumption may pose health risks to human con-
sumers. Most studies examining the ecotoxicology of micro-
plastics use microplastics spiked with analogs (congeners;
Hermabessiereet al. 2017) rather than the environmentally rele-
vant suite of potentially harmful chemical additives and mono-
mers or variety of sorbed pollutants from the environment.
Therefore, the human health risks from consumption of
microplastic-affected commercial species are unknown. Further-
more, in the environment, commercial species experience pro-
longed exposure to microplastics and the suite of associated toxic
chemicals, yet the vast majority of exposure studies are of short
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duration, spanning 21 (Wardrop et al. 2016) to 60 d (Rochman
etal. 2013).

Standardization of field and laboratory protocols

Recent reviews have highlighted the importance of micro-
plastic type in laboratory studies (Paul-Pont et al. 2018).
Microfibers are the most common form of microplastic
ingested by wild-caught fisheries species, but few studies have
focused on the effects of microfiber ingestion. Controlled lab-
oratory microfiber feeding studies documenting uptake rates
and physiological effects in commercially important species
are extremely limited in number, with only one study in
North America specifically focused on microfiber uptake
(Table 1; Woods et al. 2018). There is a need to increase study
of microfiber toxicity specifically, and broaden the micro-
plastic types used in laboratory studies generally. More work
surrounding how material or microplastic type (e.g., natural
vs. fully synthetic or polyester vs. polypropylene fiber) affect
chemical leaching should also be undertaken. Additionally,
there is a need for more rapid and cost-effective sample
processing methods to advance our understanding of micro-
plastic prevalence and effects across a broader range of com-
mercial species and locales in a reasonable timeframe.
Analysis of microfibers or microplastics with any dimension
in the micron range requires very specific, highly technical,
and costly instruments such as p-FTIR or p-Raman spectros-
copy (Rocha-Santos and Duarte 2015; Silva et al. 2018). Cur-
rent issues in analytical spectroscopy include lack of a
sufficient reference database, limited number of North Ameri-
can laboratories processing microplastic particles, interference
from plastic additives including dyes, sorbed pollutants, bio-
logical contamination, and interpretation of results for
smaller particles due to low signal to noise ratio and loss of
information in spectral fitting and processing. Another chal-
lenge is the ubiquitous nature of microplastics, necessitating
a consistent, strict field and laboratory sampling protocol to
avoid contamination from microplastics shed from clothing,
equipment, and the air. The field is cognizant of the pressing
need to standardize protocols for microplastic isolation and
analysis to increase consistency among federal and state
agencies, aquaculture staff, management agencies, and
researchers, allowing for appropriate comparisons among geo-
graphic and taxonomic ranges to establish baselines for long-
term monitoring.

Conclusions

The majority of microplastic literature from North America
focuses on occurrence in sediments, rivers, estuaries, WWTPs,
or a relatively small number of species, leaving a critical gap
in our knowledge of the occurrence in and effects of micro-
plastic ingestion in commercial fisheries. A handful of studies
document presence/absence of microplastics in North Ameri-
can commercial fishery species, but very few have tested
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Baechler et al.

microplastics as stressors or toxic agents. Of the top 10 com-
mercial finfish species (by landed weight) in Canada, the U.S,,
and Mexico, microplastic occurrence has been studied in eight
and effects in five Canadian species. In the U.S., occurrence
has been studied in eight organisms but effects have been
examined in only three, with no studies on the species with
the highest U.S. landings, Alaskan Pollock. Only three of the
top 10 commercial finfish from Mexico have been examined
for microplastics. Among the top 10 commercial shellfish spe-
cies by country, microplastic occurrence has been studied in
five and effects studied in only two Canadian species; and
four U.S. shellfish species have been investigated for micro-
plastic occurrence, with effects studied in only one. To the
best of our knowledge, there have been no microplastic preva-
lence or effect studies on Dungeness crab, snow crab, hard
blue crab, surf clams, or commercially important shrimp spe-
cies in North America. No microplastics data are available on
commercial shellfish species from Mexico, but it should be
noted that 9 of 10 species were not defined by our source data
so species-specific microplastic studies could not be deter-
mined (Fig. 2; Supporting Information Appendix 1). Many
commercial fisheries discussed in this article are also targeted
through subsistence or tribal harvest. Given the important
role of seafood in the North American diet and culture, there
is an urgent need for microplastics research to better under-
stand potential risks that microplastics and associated pollut-
ants pose to both the fisheries and human consumers.
Research priorities include: improving the geographic and tax-
onomic representation of commercial fishery species studied,
addressing the extensive knowledge gaps in population and
community level effects, and investigating microplastics as
one of multiple environmental stressors. Standardization of
field and laboratory protocols will facilitate advancement of
knowledge in these areas. Equally important is understanding
potential human health risks posed by fishery species contam-
inated with microplastics. These data are needed to inform
policy and management decisions to reduce plastic transmis-
sion into the ocean. Ultimately, such information may lead
manufacturers as well as the greater public to better under-
stand the outcomes of personal and consumer choices
around plastic use and the resultant contamination of the
seafood we put on our tables; this improved understanding
has the potential to promote behavioral changes in con-
sumer choices that reduce use of these harmful pollutants
and decrease incorporation of plastics into marine and
coastal food webs.
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